Endocytosis of Interleukin-6—Soluble Interleukin-6 Receptor Complex and Its Intralysosomal Degradation

T. A. Korolenko, P. K. Heinrich,* U. Hemmann,* O. Weiergraber,* E. Dittrich,* and L. Graeve*

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 124, No. 11, pp. 527-529, November, 1997 Original article submitted July 30, 1996

Binding and internalization of interleukin-6—soluble interleukin-6 receptor complex by MDCK and MDCK-gp130 (transfected with gp130 signal transductor) cells are studied. Binding of labeled complex depends on the concentration of interleukin-6; an effective internalization of the complex is shown. Binding and endocytosis of the complex are demonstrated in human hepatoma cells expressing interleukin-6 receptor and gp130. These processes depend on the concentration of interleukin-6. The inhibitors of lysosomal functions ammonium chloride, monensin, and leupeptin suppress intralysosomal degradation of the complex, which confirms the important role of intralysosomal cleavage of the complex.

Key Words: receptor-mediated endocytosis; interleukin-6; soluble interleukin-6 receptor; lysosomes

Interleukin-6 (IL-6) is a pleiotropic cytokine regulating growth and differentiation of various cells and involved into immunological reactions and production of acute phase proteins [7-10]. Multiple effects of IL-6 are mediated through a receptor complex consisting of two subunits, IL-6 receptor and gp130 signal transductor [8,10]. The binding of IL-6 to the receptor complex induces dimerization of gp130 and is accompanied by rapid phosphorylation of gp130, JAK-kinases, and acute phase protein transcription factor (STAT) [4,8].

The binding of IL-6 to specific cell receptor is followed by its internalization and degradation [11,12]; however, precise localization of this process is still unknown. The fate of soluble IL-6 receptor (IL-6R) also remains unclear.

Since the IL-6—IL-6R complex acts as an agonist on cells expressing gp130 on their surface, a question arises: whether internalization and intracellular de-

Laboratory of Cell Biochemistry and Physiology, Institute of Physiology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk; 'Institut fur Biochemie, Rheinisch Westfalische Technische Hochschule Aachen, Germany

gradation of this complex, and especially of IL-6R, occur in these cells.

MATERIALS AND METHODS

Recombinant human IL-6 was tested for its biological activity [2]. The following reagents were used: fetal bovine serum (Seromed), DMEM and DMEM/F-12 media (Gibco), leupeptin (Boehringer Mannheim), monensin (Calbiochem), and Bolton—Hunter reagent (specific activity 74 TBq/mmol, Amersham). ¹²⁵I-IL-6R was stored at -20°C; under these conditions its biological activity was preserved [5,11].

MDCK cells and gp130-positive MDCK-gp130 cells [6] were cultured in DMEM supplemented with 10% fetal bovine serum, 60 mg/ml penicillin, and 100 mg/liter streptomycin. Human hepatoma cells (HepG2) were cultured in DMEM/F-12 with the same supplements. For investigation of the binding and internalization of the IL-6—IL-6R complex the cells were grown in 24-well plates [5].

IL-6R (10 ng/ml) were incubated with IL-6 in a binding medium at 4°C for 12 h. Labeled ligand was then added to the cells (200 µl/well) and in-

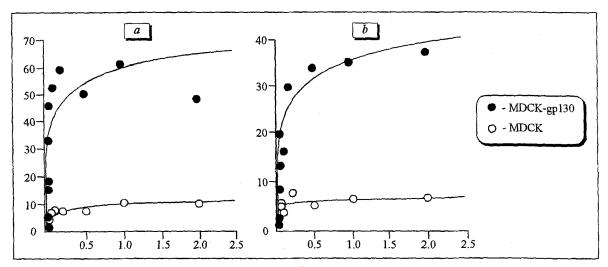


Fig. 1. Binding (a) and internalization (b) of ¹²⁵I-soluble interleukin-6 receptor (IL-6R) in MDCK-gp130 and control MDCK cells. Abscissa: IL-6R, ng/ml; ordinate: IL-6R, pg/10⁵ cells. Each point is the mean of 5 independent experiments.

cubated at 4°C for 2 h. The cells were washed 3 times with the binding medium, and the surface-bound soluble IL-6R was eluted for 5 min with 0.5 M NaCl, pH 1.0. Under these conditions 94% surface-bound ligand passed into solution.

When studying internalization of the ligand, the cells after the initial binding stage were rapidly heated and incubated at 37°C. The surface-bound ligand was then eluted, and internalized ligand was assayed after the cells were treated with 1 M NaOH for 24 h.

Degradation of labeled ligand was studied in HepG2 cells. To this end, the cells were incubated with the ligand at 4°C for 2 h and at 37°C for 1 h. The ligand was removed, the cells were washed 3 times with warm medium, and aliquots of the same medium were added to the cells and incubated for 0, 3, and 6 h. The cells were then cooled on ice, and degradation products (trichloroacetic acid—TCA-soluble and insoluble radioactivity) were measured.

TABLE 1. Inhibition of 125 I-IL-6R in HepG2 cells by Inhibitors of Lysosome Functions

Inhibitors	Incubation time, h		
	0	3	6
Control	0	16.4±1.0	32.6±1.2
Leupeptin, 20 μg/ml	0.1±0.1	10.4±0.2	18.4±0.5
Ammonium chloride, 20 mM	0.4±0.1	4.4±0.2	11.2±0.5
Monensin, 100 μM	٥	2.0±0.5	3.4±0.1

Note. Accumulation of acid-soluble degradation products is expressed in % of total radioactivity of HepG2 cells treated with 1.0 M NaOH (100%). Data of 5 independent experiments are processed statistically using the Student's t test.

For evaluation of total radioactivity, the cells were solubilized in 1 M NaOH (12 h). Radioactivity was counted in a γ -counter; binding and internalization were expressed in pg labeled IL-6R per 10^5 cells.

RESULTS

Binding and internalization of the IL-6-IL-6R complex were studied on MDCK-gp130 cells stably transfected with a gp130-encoding vector. Nontransfected MDCK cells served as the control. MDCK-gp130 cells effectively bond iodine-labeled IL-6R, the binding depending on the concentration of IL-6 (Fig. 1). Control MDCK cells bond IL-6R almost 6-fold less effectively (Fig. 1, a). This is due to endogenous expression of gp130 in MDCK cells [6]. In both cases the binding was saturable at an IL-6 concentration of 1000 ng/ml (Fig. 1, a). This concentration was used in the study of internalization. In these experiments, the cells after the initial binding period were incubated at 37°C, and the content of internalized receptor (residual radioactivity after treatment with 0.5 M NaCl, pH 1.0) was measured. About 50% surface-bound ligand was internalized during 1 h in both MDCK-gp130 and control MDCK cells (Fig. 1, b).

Human hepatoma cells HepG2 synthesize both IL-6R and gp130 [5,8]. Binding and internalization of ¹²⁵I-labeled soluble receptor in these cells similarly to MDCK-gp130 cells depended on the concentration of IL-6 (Fig. 2), but the total amount of bound ¹²⁵I-IL-6R was lower (Figs. 1 and 2).

The internalized ligand underwent intracellular (most probably, intralysosomal) degradation, as evidenced by the rise of TCA-soluble radioactivity (Table 1). At the same time, TCA-insoluble radioactivity

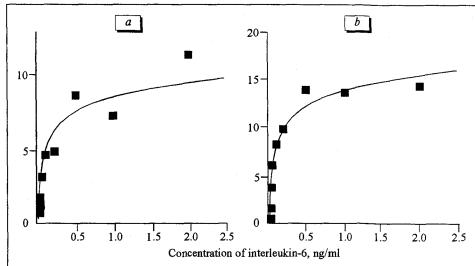


Fig. 2. Binding (a) and internalization (b) of ¹²⁵I-soluble interleukin-6 receptor (IL-6R) in human hepatoma cells (HepG2). Ordinate: IL-6R, pg/10⁵ cells. Each point is the mean of 5 independent experiments.

only slightly increased (5%), implying some damage to lysosomes during incubation with labeled ligand [1].

Generally, degradation of ¹²⁵I-labeled IL-6—IL-6R complex is a slow process: 32.6% internalized ligand was cleaved over a period of 6 h (Table 1). The causes of slow intracellular proteolysis of this complex remain unknown.

Intralysosomal degradation of IL-6—IL-6R complex was suppressed by inhibitors of lysosome functions; most effective inhibitors were ammonium chloride and monensin which reduced the rise of proteolysis products 3-4- and 8-10-fold, respectively (Table 1), leupeptin being less effective (1.5-1.7-fold inhibition). Similar differences have been previously noted for intralysosomal degradation of other ligands, in particular, asialoglycoprotein receptor, but their causes remain unclear [3].

Since ammonium chloride inhibits protein catabolism in lysosomes [1,3], its effect on the degradation of IL-6R substantiates the role of lysosomes in its degradation. Lysosomal degradation of IL-6R is also confirmed by pronounced inhibiting effect of monensin, an ionophore which increases pH in lysosomes, endosomes, and cysternae of the Golgi apparatus.

Thus, interaction of IL-6R with cells is mediated through receptor-dependent endocytosis. Internalized

ligand undergoes intralysosomal degradation. Our experiments verify the hypothesis that gp130 is required for IL-6 endocytosis. It can be assumed that cells expressing surface gp130 are able to internalize IL-6R in the presence of IL-6.

REFERENCES

- 1. T. A. Korolenko, *Protein Catabolism in Lysosomes* [in Russian], Novosibirsk (1990).
- L. A. Aarden, G. E. De, O. L. Shaap, and P. M. Lansdorp, Eur. J. Immunol., 17, 1411-1416 (1987).
- J. Amara, G. Lederkremer, and H. Lodish, J. Cell Biol., 109, 3315-3324 (1989).
- R. Arcone, P. Pucci, F. Zappacosta, et al., Eur. J. Biochem., 198, 541-547 (1991).
- E. Dittrich, S. Rose-John, C. Gerhartz, et al., J. Biol. Chem., 269, 19014-19020 (1994).
- C. Gerhartz, E. Dittrich, T. Stoyan, et al., Eur. J. Biochem., 223, 265-274 (1994).
- S. Horiuchi, Y. Koyanagi, Y. Zhou, et al., Eur. J. Immunol., 24, 1945-1948 (1994).
- T. Kishimoto, S. Akira, M. Narazaki, and T. Taga, Blood, 86, 1243-1254 (1995).
- J. Mullberg, W. Oberthur, F. Lottspeich, et al., J. Immunol., 152, 4958-4968 (1994).
- S. Rose-John and P. Heinrich, Biochem. J., 300, 281-290 (1994).
- O. Weiergraber, U. Hemmann, A. Kuster, et al., Eur. J. Biochem., 237, 1-9 (1995).
- D. Zohlnhoefer, L. Graeve, S. Rose-John, et al., FEBS Lett., 306, 219-222 (1992).